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SUMMARY

Three-dimensional finite-element analysis and a micromechanics based computer code ICAN (Integrated
Composite Analyzer) are used to predict the composite properties and microstresses of a unidirectional
graphite/epoxy primary composite with varying percentages of S-glass fibers used as hybridizing fibers at a
total fiber volume ratio of 0.54. The three-dimensional finite-clement model used in the analyses consists
of a group of nine fibers, all unidirectional, in a three-by-three unit cell array. There is generally good
agreement between the composite properties and microstresses obtained from both methods. The results
indicate that the finite-element methods and the micromechanics equations embedded in the ICAN com-
puter code can be used to obtain the properties of intermingled fiber hybrid composites needed for the
analysis/design of hybrid composite structures. However, the finite-element model should be big enough
to be able to simulate the conditions assumed in the micromechanics equations.

1. INTRODUCTION

The incorporation of two or more fibers within a single matrix is known as hybridization, and the
resulting material is referred to as a hybrid composite. The hybrid composites can be classified either as
intraply hybrid, having more than one type of fiber within a ply, or as interply hybrids, where only one
type of fiber is placed in a single ply and then the different plies are dispersed through the laminate.

In recent years, high modulus fibers such as boron and graphite have been widely used in many aero-
space applications because of their exceptionally high stiffness to weight ratios. However, the impact
strength of these composites have been found to be generally low. An effective method of improving the
impact properties of graphite fiber reinforced composites is to add a small percentage of a low-modulus
high-strength fiber. Glass fibers are generally used for this purpose. The incorporation of glass fiber not
only improves the impact properties, it can also reduce the overall cost, as many times cost is a limita-
tion for using graphite fiber composites (ref. 1).

The objective of this paper is to evaluate a commingled or intermingled-fiber hybrid composite consisting
of 54 percent high modulus graphite (P-75) fiber in an epoxy (R-930) matrix with varying percentages of
S-glass fibers used as hybridizing fibers. The composite properties are evaluated using three- dimensional
finite-element analysis and a micromechanics based computer code ICAN (ref. 2). The microstresses for
one hybrid composite obtained from both methods are also compared.



2. ICAN COMPUTER CODE

The research in the area of composite micromechanics and macromechanics over the last two decades
at NASA Lewis Research Center has resulted in several computer codes for composite mechanics and
structural analysis. The primary intention of this research is to develop composite mechanics theories
and analysis methods that range in scale from micromechanics to global structural analysis in one inte-
grated code. The micromechanics theories are represented by simplified equations and have been corrob-
orated by detailed three-dimensional finite-element analysis (ref. 3).

ICAN (Integrated Composite Analyzer) is primarily designed to describe the hygrothermomechanical
properties/response of polymer matrix composites. It can analyze standard composites, i.e., consisting of
one type of fiber in a matrix forming a lamina. In addition to that, the code can also analyze an interply
or intraply hybrid composite system. In an interply hybrid composite, each layer/lamina is made by dif-
ferent fiber/matrix combinations. An intraply hybrid composite system, on the other hand, consists of
two or more different fibers embedded in a matrix within each layer/lamina in a prescribed manner. These
layers/laminae are then arranged with prescribed orientations to form a composite laminate. The ICAN
computer code simulates a commingled tow ﬁber reinforced comp051te The mlcromechamcs equatlons
ing the temperature and / or moisture gradients through-the-thickness. However, within each layer the
temperature or moisture is assumed to be constant. Another unique feature of the ICAN computer code
is its own data base of materlal properties for commonly used fiber and matrix materials. The user needs
to specify only the code names for the constltuents, and the program searches and selects the appropriate

propértles from the data base. Itis an open- ggfiiegiwprogram in that, the material properties for new materials
as they become available as well as new analyses modules pertaining to the composite mechanics can be easily
added. More detailed information about ICAN can be found in reference 2. This program is available for

public distribution through COSMIC, Suite 112, Barrow Hall, Athens, GA 30602.

3. FINITE-ELEMENT MODEL

The finite-element model used in the computational'simulation procedure consists of a group of nine
ﬁbers, all unidirectional, in a three-by-three unit cell array (“nine cell model”) as shown in figure 1. The
primary composite system consists of high modulus (P-75) graphite fiber in an epoxy (R—Eéﬁjimatrlx
with a fiber volume ratio of 0.54. The S-glass fibers are used as hybridizing fibers in varying percentages.
The properties of the constituent materials are shown in table I. There are 10 elements (bays) along the
length of the fiber. Each unit cell, as shown in figure 1, consists of 32 hexahedron (six-sided) solid ele-
ments and eight pentahedron (ﬁve—51ded) solid elements for a total of 3600 elements and 3707 nodes
(approx. 11 000 degrees of freedom) in the model. Perfect bonding, i.e., no mterphase has been assumed

to exist between the fiber and the matrix.

4. RESULTS AND DISCUSSION

B 4.1 Composite Properties
Four hybrid composites were evaluated for composite properties as shown in figure 2: (a) No hybrid-
izing S-glass fibers added, resulting in a P-75/R-930 composite, (b) one S-glass fiber and the remaining
eight fibers are graphite fibers i.e., 1/9 or 11.1 percent hybridizing fibers. For the micromechanics

analysis, it means that the middle ply will have one out of three or 33.3 percent S-glass hybridizing Tibers,
(¢) two out of nine fibers are S-glass fibers, and (d) four fibers out of nine are S-glass hybridizing fibers.
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The ICAN computer code was used to predict the composite properties for these configurations and ply-
layups. In the case of finite-element analysis (FEA), fiber elements are assigned appropriate material
properties, i.e., S-glass or graphite fiber properties as the case may be. The composite properties from the
finite-element analysis are computed as described below. The procedure is illustrated by computing the
longitudinal modulus, E,, .. The procedure to determine other composite properties via FEA is similar
and is discussed in detaif elsewhere (ref. 3). For the case of E, , a uniform displacement field, u, is
applied in the X direction (along the fiber) on the front face (X/L = 1) and the back face (X/L = 0) is
fixed in the X direction (u = 0.0) as shown in figure 3. Constraints are also applied to prevent rigid
body motion in the 2 and 3 directions. Three-dimensional finite-element analysis is carried out with
this applied displacement field using the MSC/NASTRAN finite-element code (ref. 4). Resulting nodal
forces corresponding to those applied displacements are obtained from the finite-element analysis. From
the sum of these nodal forces, F, the longitudinal modulus is calculated as:

F.L
Fy = — (1)
11 A

where L is the length in X direction, and A is the cross-sectional area.

Such a method of analysis corresponds directly to the derivation of the micromechanics equations for
the ply longitudinal modulus used in the ICAN computer code and coupon testing to measure it. The longi-
tudinal (along the fiber) strain in all constituents are equal. The longitudinal modulus and the Poisson’s
ratios (v'z12 and v013) computed from the displacements applied in 1 direction and as predicted by the
FEA, are consistent with the assumptions made in the derivation of the micromechanics equations.

The prediction of room temperature elastic moduli, EQll and E022’ Poisson’s ratios, Vpor Vs and
shear modulus G t2 by both ICAN and FEA are shown in figures 4 to 7 for comparison purposes. It should
be noted that the ICAN computer code simulates a commingled tow fiber reinforced composite, while finite
element in this case is simulating commingled fiber reinforced composite. The agreement between the
predictions of ICAN and FEA is excellent with the exception of transverse modulus. The possible reasons
for the discrepancy in the transverse modulus will be discussed later. There is a 37 percent reduction in
longitudinal modulus when 44 percent of fibers are S-glass hybridizing fibers. There is a 25 percent increase
in transverse modulus for the same amount of hybridizing fibers. There is not much change in the Poisson’s
ratios or the shear modulus in the 1-2 direction for different amount of hybridizing fibers.

The analysis for the longitudinal and transverse thermal expansion coefficients (TEC) is performed
by applying a uniform temperature to the composite. Center planes are fixed in X, Y, and Z directions
in such a way so that the composite is forced to deform symmetrically in all directions. Resuling nodal
displacements are obtained from the finite-element analysis due to the applied thermal loading. The ther-
mal expansion coefficients are then computed by applying their basic definition. Longitudinal thermal
expansion coefficients for different amounts of S-glass hybridizing fibers are shown in figure 8. There is
considerable difference between the finite elements and the ICAN predictions. It is believed that the
model is not long enough, so that the conditions of uniform displacements could not be reached at the
plane where displacement were obtained for computing longitudinal thermal expansion coefficients.
Displacement at X/L = 0.3125 are plotted in figure 9. There is considerable nonuniformity in the
displacement particularly along B-B. Since, micromechanics equations assume a uniform displacement
field, a much longer model in the finite-element simulation is needed to achieve such a condition in this
particular case. Transverse thermal expansion coefficient is plotted for different amounts of hybridizing
fibers in figure 10(a). It seems rather insensitive to the amount of hybridizing fibers, yet ICAN and



finite-element predictions are quite different. Again looking at the displacements in the 2-2 directions,
there is some nonuniformity present. The reason for this discrepancy lies in the high degree of heteroge-
neity not only in fiber longitudinal and transverse modulus, but also between the fiber and matrix modulus
and thermal expansion coefficients. The micromechanics equations assume that a uniform displacement
field has been achieved away from the boundary. To achieve this, one has to either use specialty finite
elements or a larger model with more fibers, depending upon the degree of heterogeneity. Although, the
results are not shown here, for a different hybrid composite system, where the degree of heterogeneity is
much less, the ICAN and finite-element results are much closer. In other words, one has to view the
finite-elements results with caution. For the same reason, one has to view the experimental results with
caution too. When experiments are performed on small coupons, and the results are used for the design
of large components, they could be erroneous.

It shows that the properties obtained via micromechanics equations, where the effort required is
considerably less as compared to a detailed finite-element analysis, can be used with confidence in the
analysis/design of hybrid composite structures, and the finite-element results should be interpreted with
caution. Again, the discrepancy in the results wherever present is due to the fact that there is high degree
of heterogeneity between the moduli and the thermal expansion coefficients of the fiber and matrix material
~used in the present work. :

4.2 Microstresses

Microstresses in the fiber and matrix were also computed for both longitudinal and transverse load-
ing. However, the microstresses were computed for only one hybrid composite, i.e., case (c) where two
out of nine fibers are S-glass hybridizing fibers. In the case of longitudinal (along the fiber) loading, a
uniform displacement is applied on the front face (X/L = 1), while the back face (X/L = 0) is restrained
in x direction. Resulting nodal forces, and thus, the equivalent stress on that face is computed by finite-
element analysis. The same stress in the 1 direction is applied for the ICAN analysis. The finite-element
stresses are evaluated in the center cell at the middle plane (X/L = 0.5). The longitudinal stress in graphite
and S-glass fibers and the longitudinal stress in matrix at the middle plane are shown in figure 11. There
is excellent agreement between the FEA and ICAN microstress results for this loading case.

In the case of transverse loadlng, the same stress is applied on the composite for both ICAN and FEA
analyses. The 2-2 microstresses for the top plyiaﬁétltuents are shown in figure 12, while 2-2 microstresses
for the middle ply constituents are shown in figure 13. Most of the microstress result,s are in good agree-
ment with the finite-element analysis results, except for the 2-2 stress in glass fiber which shows about
50 percent difference. This discrepancy was beheved to be due to the high degree of heterogenelty in the
fiber material of graphite (E,/E,) and also the ratio of moduli of the fiber and matrix materials. The-
micromechanics equations used in the ICAN computer code assume a uniform displacement field (i.e., the
stress evaluation point is far away from the boundary/load application points), and the applied load is
resisted in the ratio of the stiffnesses of the constituents. Although the results are not shown here, for a
different composite system where the degree of heterogeneity in the properties of the constituent materials
is much less, the finite element and the ICAN predictions for microstresses are much closer. A further
investigation in this aspect is continuing. In order to achieve these uniform displacement conditions in
the finite-element model, either specialty finite elements or a larger model with more numbers of fibers,
depending upon the degree of heterogeneity, has to be used as mentioned before. In other words, one has
to be careful in analyzing results obtained from finite elements analyses.
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5. CONCLUSIONS

Three-dimensional finite-element analysis and a micromechanics based computer code ICAN were
used for the prediction of composite properties and microstresses for a unidirectional graphite/epoxy
composite with varying percentages of S-glass fibers used as hybridizing fibers. The mechanical proper-
ties, i.e., normal and shear moduli and the Poisson’s ratios, predicted by both methods are in good agree-
ment with the exception of transverse modulus. However, there is difference in the prediction of thermal
expansion coefficients. The constituent microstresses due a longitudinal and transverse load are also
generally in good agreement. The finite-element model, depending upon the degree of heterogeneity has
to be large enough to be able to simulate conditions assumed in the micromechanics equations, e.g.,
condition of uniform displacement, etc. Both the finite-element analysis and the composite micromechan-
ics equations can be used with confidence to obtain the properties of hybrid composites needed for analy-
sis/ design of hybrid composite structures. However, caution should be used in interpreting finite-element
results to ensure that the computational simulation model geometry simulate the conditions assumed in
the micromechanics equations.

6. REFERENCES

1. Agarwal, B.D.; and Broutman, L.J.: Analysis and Performance of Fiber Composites. Second ed.
Wiley, 1990.

2. Murthy, P.L.N.; and Chamis, C.C.: Integrated Composite Analyzer (ICAN). Users and Program-
mers Manual. NASA TP-2515, 1986.

3. Caruso, J.J.: Application of Finite Element Substructuring to Composite Micromechanics. NASA
TM-83729, 1984.

4. MSC/NASTRAN, User’s Manual, Version 64, Vol. I and II. The MacNeal-Schwendler Corp.,
Los Angeles, CA, 1984.

TABLE I.—PROPERTIES OF CONSTITUENT MATERIALS

P-75 fiber R-930 matrix S-glass fiber
Modulus, E,,, GPa 517 2.1 85.5
Modulus, E;;, GPa 6.2 2.1 85.5
Poisson’s ratio, v,, .2 .45 .2
Poisson’s ratio, v,y .25 45 .2
Shear modulus, G,,, GPa 7.6 7 35.7
Shear modulus, G,4, GPa T N 35.7
Coefficient of thermal
expansion
a;, ppm/°C -1.3 65 5.0
ag, ppm/°C 10.1 65 5.0
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Figure 10.—Transverse thermal expansion coefficient and dis-
placement in 2-2 direction along BB. AT = 500 F (x/L = 0.5).
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